Participatory planning processes
Rodney Gallacher

Food and Agriculture Organization, Rome, Italy
Tel: 396 5705 3085; Fax: 396 5705 6275; E-mail: rodney.gallacher@fao.org

ABSTRACT
Sorting of information into issues and opportunities enables plans and priorities to be formulated by the stakeholders. Associated to these activities, the roles of implementation and evaluation are negotiated. This process is particularly valuable for addressing desertification and degradation scenarios on range and pasture lands.

Soil Conservation Group in the Land and Water Development Division of the Food and Agriculture Organization has been particularly concerned with involving stakeholders to design and implement projects in a participatory manner. Successful examples are presented.

In addition to physical and production data, FAO makes case studies of success stories in economics, social and policy issues widely available as a step towards building on lists of options which can be adapted and adopted in joint efforts with national and international organizations.

Key words: land use planning, participatory planning, soil conservation, WOCAT.

SETTING THE SCENE
Governments have a poor record in conserving soils; it becomes clear that to be successful, area-based conservation can only be achieved by many thousands of individuals acting in groups or through community planning and participation. The spirit of ownership of the solutions has to be encouraged to ensure sustainability. On a smaller scale, participatory planning has been carried out for millennia. We are only now beginning to document the historically significant participative efforts. Community conservation and management of resources on a large scale has been demonstrated since early in the 20th century. The results from Iceland, Tennessee Valley Authority in USA, Italy with FAO in Syria and Eppalock in Australia (Box 1) to mention a few examples.

The highly participative Eppalock experience marked a turning point in the way Commonwealth and State Governments in Australia dealt with soil conservation and environment rehabilitation of severely degraded rangelands. The land user was no longer seen as primary despoiler and government began to take responsibility for defective policies that presented and led to degradation in medium and longer terms. The entire community benefited as costs were recovered from taxes on increased productivity, extra employment created and diversity of rural activities introduced.

Soon after the Eppalock project ended, the idea which came to be known as “Landcare” began forming in Australia and then New Zealand (Alexander 1995). Small groups of range and crop land-users were encouraged to propose their own environmental management plans, to be discussed with the relevant public authority or line

1 The author of this paper, left the Soil Conservation Authority, Victoria, Australia after almost 8 years in 1969 for a series of FAO postings in Africa and the Near East, including Algeria, Ethiopia, Morocco, Niger, Rwanda, Syria and Tunisia. In 1985 he joined the Soil Conservation Group in FAO Land and Water Development Division, to work on policies, project formulation and field support to Africa, Near East and Southeast Asia.

Catarina Batello, Agricultural Officer, Pasture Improvement, AGPC, FAO, helped revise the range content overall, but especially concerning Syria.
PARTICIPATORY PLANNING PROCESSES

IIED (Dalal-Clayton 1997) recommend that governments and donors actively promote participatory approaches; their advice is perhaps tardy but the point is valid. There is a need to facilitate dialogue and “ownership” for problem identification and devising solutions. And this must happen vertically and horizontally with the aim of “top down” meeting “bottom up” somewhere in the middle, taking care to include those groups that are often marginalized. IIED also warn against “collecting vast quantities of unnecessary information” but to fit data to specific interest needs.

In the search for sustainability, participatory planning plays an increasing role for identifying the real causes of problems and choosing appropriate remedies from a range of options. It is important to recognize that there are various levels or degrees of participation (Box 2), in order to avoid misunderstandings of terms. Participation can be imposed; some organizations systematically write “participation” into the project documents but that may be counter-productive in the wrong circumstances.

Box 1. Eppalock Catchment Project, Australia.

From 1838 to 1960, forest destruction, overgrazing and overcropping brought on the ruin of the pasture and rangelands in Heathcote area of the State of Victoria, Australia. Reservoir construction was due to begin in 1960 concurrently with integrated catchment management.

Over the most degraded area of 830 km2 the major treatment was to be pasture improvement with *Trifolium subterraneum* (subclover, leguminous annual) and *Phalaris aquatica* (perennial grass) together with phosphate and lime applied with chisel seeders, a minimum tillage operation. Government shared costs with land users. The inappropriate annual cropping was practically abandoned by all upland users and long pasture rotations became the norm on gently-sloping aluvial soils.

At the same time, Government began a rehabilitation programme on the “badlands”. Works included erosion gully smoothing and revegetating, protective fencing, reforesting badlands, gully head structures and silt traps, streambank stabilization, aerial topdressing and a concerted rabbit destruction campaign with the land users over the entire range and crop area.

This required a major extension effort in which soil conservation officers were allocated specific micro-catchments for planning and implementation. This became a personal service to land users to help plan pasture improvement, water supply and subdivision fencing as well as helping refine plans for structural and vegetative works carried out at public cost.

21,000 hectares of chisel seeding produced dramatic improvements in soil cover and a significantly decreased volume of runoff by 1975.

Economics: Net value of improvements in 1975 was AU$ 2.91 million with an internal rate of return of 25.4% and benefit/cost ratio of 2.0 using 8% discount rate. Production was roughly tripled in income and livestock carrying capacity, with added diversity into lamb fattening and beef cattle. Land users gained more than the community but even so, the community gained more through additional taxation than it contributed in subsidies.

Community costs were those for the Soil Conservation Authority and the Department of Agriculture of the State of Victoria, Australia, plus provincial and municipal authorities, as well as the fertilizer subsidy provided by the Commonwealth of Australia.

(Department of Conservation 1985)
PROBLEM IDENTIFICATION

There is still work to be done on sociology and economics aspects to address the more difficult issue of drafting policy to plan, policy to manage. But the difference is that we are now able to call on a worldwide team of highly specialized volunteers. We ought to make use of this opportunity, as it may not last in present form. And we should develop rigorous guidelines to avoid collecting superfluous information.

The International Scheme for Conservation and Rehabilitation of African Lands, ISCRAL (FAO 1990) recommends paths for addressing land user needs while strengthening institutes. Africans helped at various stages in the design of ISCRAL. Range management is an essential ingredient of the land use options.

The innovative Zimbabwe experience (Box 3) gives a lot of food for thought. The University of Zimbabwe discussed various scenarios with stakeholders in order to present drafts to government. The proposition outlined in the box refers to rangelands, which was perhaps the most straightforward case; private access cropping land presented many more difficulties.

Box 2. Typology of Participation.

<table>
<thead>
<tr>
<th>Level</th>
<th>Typology</th>
<th>Components (reduced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Passive participation:</td>
<td>People are told what will happen or is taking place</td>
</tr>
<tr>
<td>2.</td>
<td>Participation in information:</td>
<td>People answer survey team’s questions (no follow-up)</td>
</tr>
<tr>
<td>3.</td>
<td>Participation by consultation:</td>
<td>People answer questions but outsiders define/design</td>
</tr>
<tr>
<td>4.</td>
<td>Participation for incentives:</td>
<td>People work for cash, food or other incentives</td>
</tr>
<tr>
<td>5.</td>
<td>Functional participation:</td>
<td>Decisions by outsiders, groups form to meet objectives</td>
</tr>
<tr>
<td>6.</td>
<td>Interactive participation:</td>
<td>Joint analysis and decisions for action plans, group implements, monitors</td>
</tr>
<tr>
<td>7.</td>
<td>Self mobilization:</td>
<td>Initiatives taken independently from official institutions</td>
</tr>
</tbody>
</table>

a) These levels of participation are not intended to imply that 1 is bad and 7 is the ideal (Modified after J. Pretty 1994).

Box 3. Economic Management of Natural Resources, Zimbabwe.

Villages are being transformed into democratic companies in Zimbabwe. This alters the system from birthright access to land, to membership in owning and managing village assets as essentially a property company. Members agree on yearly allocation of rights to arable or grazing land, water or woodlands. For grazing, the community decides how many animals to carry (for example, 1,000) and this total is divided by the number of members (example, 100) to give equitable shares. Members may trade shares among themselves when arriving at a price for grazing (such as $10 per unit). In this example the value of the grazing is $10,000 for the company and $100 for each member. If the company at the annual general meeting decides to retain part of the value for reinvestment, members contribute in proportion to their share holding. Some may need to sell part of their grazing rights to raise the due money.

This total land use value is a solid basis for negotiating company bank loans since repayment is assured (N. Reynolds 1992).
World Overview of Conservation Approaches and Technologies (WOCAT) provides concise descriptions of problems and their context with geo-references so that at the very least, the physical characteristics can be analysed (Box 4) and treatments proposed for equivalent areas, based on Agro-ecological Zoning criteria (FAO 1996) or others such as Global Assessment of Soil Degradation.

WOCAT was launched in 1992 and coordinated by the University of Bern, Switzerland, as a World Association of Soil and Water Conservation project in collaboration with a consortium of institutes including FAO. The aim is to promote integration of successful soil and water conservation approaches and technologies into land use systems world-wide. A framework for evaluation of soil and water conservation was developed through a series of international workshops and task force meetings. Data collection began in 1995 with a set of questionnaires, completed through regional workshops and individual submissions.

The database now permits analyses of the effectiveness in physical, economic and social terms of data from most continents, including more than 100 technologies and over 60 approaches described in detail (WOCAT 1997). To view, see: http://www.giub.unibe.ch/cde/projects/wocat.htm

The FAO/Italy project in Syria “Range rehabilitation & establishment of a wildlife reserve in the steppe” has arranged negotiation between government officers and Bedouins to fix rights and privileges on grazing through the establishment of Grazing Committees. In parallel, a wildlife reserve of 22,000 ha has been established and an integrated management introduced where wildlife (gazelles and oryx) is grazing together with camels. This to improve the use of different fodder species, to maintain rangeland biodiversity, and to combine the production of livestock with the maintenance of wildlife. Already over 3,150 ha of range have been improved through reseeding of native species (Salsola vermiculata and Atriplex leucoclada) and grazing management plans are developed to manage over 95,000 head of Awassi sheep and 1200 camels.

An ongoing training support is ensuring income diversity for the families in such pursuits as handicrafts, collecting and marketing truffles and medicinal herbs, plus collecting and selling range species seeds. Another aspect is adult literacy training and especially environmental awareness and monitoring of range resources.

The beneficiary population of the 3 cooperatives is about 3,050 persons in the reserve, with about 100,000 sheep in addition to goats and camels.

The Way Forward

In following the ISCRAL framework set out by FAO (1990), a country is advised to appoint a coordinating committee at a high level to study issues at all levels in development. From then on, it has been continual negotiation in a participative manner. One aim, for example, is to encourage range users to organize themselves into cooperatives for learning and information exchange, with possibilities of arranging bulk purchase of certain inputs or group marketing of produce or joint on-site trials.
The national coordination committee would be responsible for collecting and describing options for issues with the aim of drafting policies, to be pre-tested and refined with representative land user groups.

If there is not an appropriate existing soil conservation or environmental network in the area, then the WOCAT global network may have suitable rangeland case studies and suggestions (Box 4). However, basic information is still needed on what has succeeded in the past, as well as what is known to have failed and the reasons for failure. This has become the global mandate of WOCAT in soil and water conservation matters for farm, forest and range and is presently being expanded at national level in certain cases with FAO assistance.

WOCAT is not only collecting technology success stories. The WOCAT definition of soil and water conservation approach is “the ways and means to implement a soil and water conservation technology on the ground”. WOCAT is collecting information on implementation procedures followed by institutes. The intention is to provide multiple choices and patterns of analyses to planners in order to present the end users with examples to adapt to their specific conditions. Note that the emphasis is not on finding a technology which “fits”, but rather on examining problems already encountered and partly resolved by others, whether policy, economic, social or other. Then discussing options with the target groups.

An excellent model for implementation is the Landcare movement in Australia and New Zealand as described earlier. Many of the active groups, having solved the initial problem, then looked around for other local problems to address.

CONCLUDING THOUGHTS

Gathering knowledge and making it useful is becoming easier as the respondent now has the opportunity to look at outputs “online” to better grasp the significance of data being collected from around the globe. As well as asking questions via Internet, the subject matter specialist can participate in a real sense by reporting successes in the WOCAT format. The global structure is mostly in place.

Valuable material is available and can be assembled for decision-makers and those concerned with monitoring and evaluation. Technicians and land users can participate to the extent that they become partners and owners of the successes.

Multiple choice paths can be followed to resolve difficulties. One possible entry point is through WOCAT questionnaires “online” or in paper version. WOCAT can provide case studies and maps of degradation and counter-measures used, which can help for the National Action Plan under the Convention to Combat Desertification. This can also provide an opening to adoption of the ISCRAL framework (FAO 1990).

FAO can provide many examples of frameworks and tools in use for participatory exercises. Vertical and horizontal participation has become a reality in the problem identification and process for selecting options as well as participatory monitoring. It can also be shown to lead to success with community efforts in soil conservation.

REFERENCES

